compressed-tensors
compressed-tensors extends safetensors files to compressed tensor data types to provide a unified checkpoint format for storing and loading various quantization and sparsity formats such dense, int-quantized (int8), float-quantized (fp8), and pack-quantized (int4 or int8 weight-quantized packed into int32).
compressed-tensors supports fine-tuning with PEFT and includes the following features as well.
- fp8, int4, int8 weight and activation precisions.
- Quantization scales and zero-points strategies for tensor, channel, group, block, token.
- Dynamic per-token activation quantization (or any static strategy).
- Weight sparsity (unstructured or semi-structured like 2:4) can be composed with quantization for extreme compression.
- Quantization of arbitrary modules, not just nn.Linear modules.
- Targeted support for specific modules by name or class.
Install compressed-tensors from PyPI to get the latest stable release (recommended) or install it from source to get the latest features.
pip install compressed-tensorsgit clone https://github.com/neuralmagic/compressed-tensorscd compressed-tensorspip install -e .Search using the compressed-tensors tag to find a compatible model on the Hugging Face Hub.
Only models that have already been quantized can be loaded at the moment, and once a model is loaded, it cannot be saved. To quantize a model into the compressed-tensors format, see llm-compressor. Alternatively, models can be created independently and serizlied with a compressed-tensors config.
from transformers import AutoModelForCausalLM
ct_model = AutoModelForCausalLM.from_pretrained("nm-testing/Meta-Llama-3.1-8B-Instruct-FP8-hf", device_map="auto")
# measure memory usagemem_params = sum([param.nelement()*param.element_size() for param in ct_model.parameters()])print(f"{mem_params/2**30:.4f} GB")# 8.4575 GBModel checkpoint
Section titled “Model checkpoint”Compressed-tensor models are defined through its configuration entry. The following example is taken from the nm-testing/Meta-Llama-3.1-8B-Instruct-FP8-hf config.json file.
There are a lot of entries to allow for flexible expression both during and after compression, but the entries for loading and inference can be simplified to focus on just a few key entries.
"quantization_config": { "config_groups": { "group_0": { "input_activations": { "num_bits": 8, "strategy": "tensor", "type": "float" }, "targets": ["Linear"], "weights": { "num_bits": 8, "strategy": "tensor", "type": "float" } } }, "format": "naive-quantized", "ignore": ["lm_head"], "quant_method": "compressed-tensors", "quantization_status": "frozen"},The config file specifies the quantization of a config group (group_0), which includes weight and activation quantization to fp8 with a static per-tensor strategy. The lm_head module is unquantized as shown in the ignore key.
For a more detailed look at the model weights, use the safetensors viewer on the model card to see the quantized weights, input scale, and weight scale for all nn.Linear modules.
| Tensors | Shape | Precision |
|---|---|---|
| model.layers.0.input_layernorm.weight | [4 096] | BF16 |
| model.layers.0.mlp.down_proj.input_scale | [1] | BF16 |
| model.layers.0.mlp.down_proj.weight | [4 096, 14 336] | F8_E4M3 |
| model.layers.0.mlp.down_proj.weight_scale | [1] | BF16 |
| model.layers.0.mlp.gate_proj.input_scale | [1] | BF16 |
| model.layers.0.mlp.gate_proj.weight | [14 336, 4 096] | F8_E4M3 |
| model.layers.0.mlp.gate_proj.weight_scale | [1] | BF16 |
| model.layers.0.mlp.up_proj.input_scale | [1] | BF16 |
| model.layers.0.mlp.up_proj.weight | [14 336, 4 096] | F8_E4M3 |
| model.layers.0.mlp.up_proj.weight_scale | [1] | BF16 |
| model.layers.0.post_attention_layernorm.weight | [4 096] | BF16 |
| model.layers.0.self_attn.k_proj.input_scale | [1] | BF16 |
| model.layers.0.self_attn.k_proj.weight | [1 024, 4 096] | F8_E4M3 |
| model.layers.0.self_attn.k_proj.weight_scale | [1] | BF16 |
| model.layers.0.self_attn.o_proj.input_scale | [1] | BF16 |
| model.layers.0.self_attn.o_proj.weight | [4 096, 4 096] | F8_E4M3 |
| model.layers.0.self_attn.o_proj.weight_scale | [1] | BF16 |
| model.layers.0.self_attn.q_proj.input_scale | [1] | BF16 |
| model.layers.0.self_attn.q_proj.weight | [4 096, 4 096] | F8_E4M3 |
| model.layers.0.self_attn.q_proj.weight_scale | [1] | BF16 |
| model.layers.0.self_attn.v_proj.input_scale | [1] | BF16 |
| model.layers.0.self_attn.v_proj.weight | [1 024, 4 096] | F8_E4M3 |
| model.layers.0.self_attn.v_proj.weight_scale | [1] | BF16 |
When loading a compressed-tensors model with the HFQuantizer integration, all the nn.Linear modules specified in the quantization config are replaced by CompressedLinear modules that manage the compressed weights and forward pass for inference. The lm_head module is still kept as an unquantized nn.Linear module.
from transformers import AutoModelForCausalLM
ct_model = AutoModelForCausalLM.from_pretrained("nm-testing/Meta-Llama-3.1-8B-Instruct-FP8-hf")print(ct_model)"""LlamaForCausalLM( (model): LlamaModel( (embed_tokens): Embedding(128256, 4096) (layers): ModuleList( (0-31): 32 x LlamaDecoderLayer( (self_attn): LlamaSdpaAttention( (q_proj): CompressedLinear( in_features=4096, out_features=4096, bias=False (input_observer): MovingAverageMinMaxObserver() (weight_observer): MovingAverageMinMaxObserver() ) (k_proj): CompressedLinear( in_features=4096, out_features=1024, bias=False (input_observer): MovingAverageMinMaxObserver() (weight_observer): MovingAverageMinMaxObserver() ) (v_proj): CompressedLinear( in_features=4096, out_features=1024, bias=False (input_observer): MovingAverageMinMaxObserver() (weight_observer): MovingAverageMinMaxObserver() ) (o_proj): CompressedLinear( in_features=4096, out_features=4096, bias=False (input_observer): MovingAverageMinMaxObserver() (weight_observer): MovingAverageMinMaxObserver() ) (rotary_emb): LlamaRotaryEmbedding() ) (mlp): LlamaMLP( (gate_proj): CompressedLinear( in_features=4096, out_features=14336, bias=False (input_observer): MovingAverageMinMaxObserver() (weight_observer): MovingAverageMinMaxObserver() ) (up_proj): CompressedLinear( in_features=4096, out_features=14336, bias=False (input_observer): MovingAverageMinMaxObserver() (weight_observer): MovingAverageMinMaxObserver() ) (down_proj): CompressedLinear( in_features=14336, out_features=4096, bias=False (input_observer): MovingAverageMinMaxObserver() (weight_observer): MovingAverageMinMaxObserver() ) (act_fn): SiLU() ) (input_layernorm): LlamaRMSNorm((4096,), eps=1e-05) (post_attention_layernorm): LlamaRMSNorm((4096,), eps=1e-05) ) ) (norm): LlamaRMSNorm((4096,), eps=1e-05) (rotary_emb): LlamaRotaryEmbedding() ) (lm_head): Linear(in_features=4096, out_features=128256, bias=False))"""