Skip to content

ZoeDepth

This model was released on 2023-02-23 and added to Hugging Face Transformers on 2024-07-08.

PyTorch

ZoeDepth is a depth estimation model that combines the generalization performance of relative depth estimation (how far objects are from each other) and metric depth estimation (precise depth measurement on metric scale) from a single image. It is pre-trained on 12 datasets using relative depth and 2 datasets (NYU Depth v2 and KITTI) for metric accuracy. A lightweight head with a metric bin module for each domain is used, and during inference, it automatically selects the appropriate head for each input image with a latent classifier.

drawing

You can find all the original ZoeDepth checkpoints under the Intel organization.

The example below demonstrates how to estimate depth with Pipeline or the AutoModel class.

import requests
import torch
from transformers import pipeline
from PIL import Image
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
pipeline = pipeline(
task="depth-estimation",
model="Intel/zoedepth-nyu-kitti",
dtype=torch.float16,
device=0
)
results = pipeline(image)
results["depth"]
import torch
import requests
from PIL import Image
from transformers import AutoModelForDepthEstimation, AutoImageProcessor
image_processor = AutoImageProcessor.from_pretrained(
"Intel/zoedepth-nyu-kitti"
)
model = AutoModelForDepthEstimation.from_pretrained(
"Intel/zoedepth-nyu-kitti",
device_map="auto"
)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = image_processor(image, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model(inputs)
# interpolate to original size and visualize the prediction
## ZoeDepth dynamically pads the input image, so pass the original image size as argument
## to `post_process_depth_estimation` to remove the padding and resize to original dimensions.
post_processed_output = image_processor.post_process_depth_estimation(
outputs,
source_sizes=[(image.height, image.width)],
)
predicted_depth = post_processed_output[0]["predicted_depth"]
depth = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min())
depth = depth.detach().cpu().numpy() * 255
Image.fromarray(depth.astype("uint8"))
  • In the original implementation ZoeDepth performs inference on both the original and flipped images and averages the results. The post_process_depth_estimation function handles this by passing the flipped outputs to the optional outputs_flipped argument as shown below.

    with torch.no_grad():
    outputs = model(pixel_values)
    outputs_flipped = model(pixel_values=torch.flip(inputs.pixel_values, dims=[3]))
    post_processed_output = image_processor.post_process_depth_estimation(
    outputs,
    source_sizes=[(image.height, image.width)],
    outputs_flipped=outputs_flipped,
    )
  • Refer to this notebook for an inference example.

[[autodoc]] ZoeDepthConfig

[[autodoc]] ZoeDepthImageProcessor - preprocess

[[autodoc]] ZoeDepthImageProcessorFast - preprocess

[[autodoc]] ZoeDepthForDepthEstimation - forward