VITS
This model was released on 2021-06-11 and added to Hugging Face Transformers on 2023-09-01.
VITS (Variational Inference with adversarial learning for end-to-end Text-to-Speech) is a end-to-end speech synthesis model, simplifying the traditional two-stage text-to-speech (TTS) systems. It’s unique because it directly synthesizes speech from text using variational inference, adversarial learning, and normalizing flows to produce natural and expressive speech with diverse rhythms and intonations.
You can find all the original VITS checkpoints under the AI at Meta organization.
The example below demonstrates how to generate text based on an image with Pipeline or the AutoModel class.
import torchfrom transformers import pipeline, set_seedfrom scipy.io.wavfile import write
set_seed(555)
pipe = pipeline( task="text-to-speech", model="facebook/mms-tts-eng", dtype=torch.float16, device=0)
speech = pipe("Hello, my dog is cute")
# Extract audio data and sampling rateaudio_data = speech["audio"]sampling_rate = speech["sampling_rate"]
# Save as WAV filewrite("hello.wav", sampling_rate, audio_data.squeeze())import torchimport scipyfrom IPython.display import Audiofrom transformers import AutoTokenizer, VitsModel, set_seed
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")model = VitsModel.from_pretrained("facebook/mms-tts-eng", device_map="auto", dtype=torch.float16)inputs = tokenizer("Hello, my dog is cute", return_tensors="pt").to(model.device)
set_seed(555)
with torch.no_grad(): outputs = model(**inputs)
waveform = outputs.waveform[0]scipy.io.wavfile.write("hello.wav", rate=model.config.sampling_rate, data=waveform)
# display in Colab notebookAudio(waveform, rate=model.config.sampling_rate)-
Set a seed for reproducibility because VITS synthesizes speech non-deterministically.
-
For languages with non-Roman alphabets (Korean, Arabic, etc.), install the uroman package to preprocess the text inputs to the Roman alphabet. You can check if the tokenizer requires uroman as shown below.
# pip install -U uromanfrom transformers import VitsTokenizertokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng")print(tokenizer.is_uroman)If your language requires uroman, the tokenizer automatically applies it to the text inputs. Python >= 3.10 doesn’t require any additional preprocessing steps. For Python < 3.10, follow the steps below.
Terminal window git clone https://github.com/isi-nlp/uroman.gitcd uromanexport UROMAN=$(pwd)Create a function to preprocess the inputs. You can either use the bash variable
UROMANor pass the directory path directly to the function.import torchfrom transformers import VitsTokenizer, VitsModel, set_seedimport osimport subprocesstokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-kor")model = VitsModel.from_pretrained("facebook/mms-tts-kor")def uromanize(input_string, uroman_path):"""Convert non-Roman strings to Roman using the `uroman` perl package."""script_path = os.path.join(uroman_path, "bin", "uroman.pl")command = ["perl", script_path]process = subprocess.Popen(command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)# Execute the perl commandstdout, stderr = process.communicate(input=input_string.encode())if process.returncode != 0:raise ValueError(f"Error {process.returncode}: {stderr.decode()}")# Return the output as a string and skip the new-line character at the endreturn stdout.decode()[:-1]text = "이봐 무슨 일이야"uromanized_text = uromanize(text, uroman_path=os.environ["UROMAN"])inputs = tokenizer(text=uromanized_text, return_tensors="pt")set_seed(555) # make deterministicwith torch.no_grad():outputs = model(inputs["input_ids"])waveform = outputs.waveform[0]
VitsConfig
Section titled “VitsConfig”[[autodoc]] VitsConfig
VitsTokenizer
Section titled “VitsTokenizer”[[autodoc]] VitsTokenizer - call - save_vocabulary
VitsModel
Section titled “VitsModel”[[autodoc]] VitsModel - forward