Skip to content

Pixio

This model was released on {release_date} and added to Hugging Face Transformers on 2025-12-16. This model is to be announced

PyTorch FlashAttention SDPA

Pixio is a vision foundation model that uses ViT as a feature extractor for multiple downstream tasks like depth estimation, semantic segmentation, feed-forward 3D reconstruction, robotics, and image classification. It is built on the Masked Autoencoder (MAE) pre-training framework, with four minimal yet critical updates: 1) deeper decoder, 2) larger masking granularity, 3) more class tokens, and 4) web-scale curated training data.

You can find all the original Pixio checkpoints under the Pixio collection.

The example below demonstrates how to obtain an image embedding with the AutoModel class.

import requests
from transformers import AutoImageProcessor, AutoModel
from PIL import Image
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained("facebook/pixio-vith16")
model = AutoModel.from_pretrained("facebook/pixio-vith16")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
features_norm = outputs.last_hidden_state # class tokens + patch tokens after last LayerNorm
features = outputs.hidden_states[-1] # class tokens + patch tokens before last LayerNorm
  • The example below shows how to split the output tensor into:

    • a set of global embeddings for the whole image, commonly referred to as CLS token, useful for classification and retrieval. You can either average them (recommended) or concatenate them along the channel dimension.
    • a set of local embeddings, one for each 16x16 patch of the input image, useful for dense tasks, such as depth estimation and semantic segmentation.
    from transformers import AutoImageProcessor, AutoModel
    from PIL import Image
    import requests
    url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
    image = Image.open(requests.get(url, stream=True).raw)
    print(image.height, image.width) # [480, 640]
    processor = AutoImageProcessor.from_pretrained('facebook/pixio-vith16')
    model = AutoModel.from_pretrained('facebook/pixio-vith16')
    patch_size = model.config.patch_size
    inputs = processor(images=image, return_tensors="pt")
    print(inputs.pixel_values.shape) # [1, 3, 256, 256]
    batch_size, rgb, img_height, img_width = inputs.pixel_values.shape
    num_patches_height, num_patches_width = img_height // patch_size, img_width // patch_size
    num_patches_flat = num_patches_height * num_patches_width
    outputs = model(**inputs)
    last_hidden_states = outputs.last_hidden_state
    print(last_hidden_states.shape) # [1, 8 + 256, 1280]
    assert last_hidden_states.shape == (batch_size, model.config.n_cls_tokens + num_patches_flat, model.config.hidden_size)
    cls_tokens = last_hidden_states[:, :model.config.n_cls_tokens, :]
    patch_features = last_hidden_states[:, model.config.n_cls_tokens:, :].unflatten(1, (num_patches_height, num_patches_width))
  • Use torch.compile to speedup inference.

    import torch
    from transformers import AutoImageProcessor, AutoModel
    from PIL import Image
    import requests
    url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
    image = Image.open(requests.get(url, stream=True).raw)
    processor = AutoImageProcessor.from_pretrained('facebook/pixio-vith16')
    model = AutoModel.from_pretrained('facebook/pixio-vith16')
    compiled_model = torch.compile(model)
    inputs = processor(images=image, return_tensors="pt")
    outputs = compiled_model(**inputs)
    last_hidden_states = outputs.last_hidden_state

[[autodoc]] PixioConfig

[[autodoc]] PixioModel - forward

[[autodoc]] PixioBackbone - forward