OLMo2
This model was released on 2024-12-31 and added to Hugging Face Transformers on 2024-11-25.
OLMo2 improves on OLMo by changing the architecture and training recipes of the original models. This includes excluding all biases to improve training stability, non-parametric layer norm, SwiGLU activation function, rotary positional embeddings, and a modified BPE-based tokenizer that masks personal identifiable information. It is pretrained on Dolma, a dataset of 3T tokens.
You can find all the original OLMo2 checkpoints under the OLMo2 collection.
The example below demonstrates how to generate text with Pipeline, AutoModel and from the command line.
import torchfrom transformers import pipeline
pipe = pipeline( task="text-generation", model="allenai/OLMo-2-0425-1B", dtype=torch.float16, device=0,)
result = pipe("Plants create energy through a process known as")print(result)import torchfrom transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained( "allenai/OLMo-2-0425-1B")
model = AutoModelForCausalLM.from_pretrained( "allenai/OLMo-2-0425-1B", dtype=torch.float16, device_map="auto", attn_implementation="sdpa")input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to(model.device)
output = model.generate(**input_ids, max_length=50, cache_implementation="static")print(tokenizer.decode(output[0], skip_special_tokens=True))echo -e "Plants create energy through a process known as" | transformers run --task text-generation --model allenai/OLMo-2-0425-1B --device 0Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.
The example below uses torchao to only quantize the weights to 4-bits.
#pip install torchaoimport torchfrom transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
torchao_config = TorchAoConfig( "int4_weight_only", group_size=128)
tokenizer = AutoTokenizer.from_pretrained( "allenai/OLMo-2-0425-1B")
model = AutoModelForCausalLM.from_pretrained( "allenai/OLMo-2-0425-1B", quantization_config=torchao_config, dtype=torch.bfloat16, device_map="auto", attn_implementation="sdpa")input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to(model.device)
output = model.generate(**input_ids, max_length=50, cache_implementation="static")print(tokenizer.decode(output[0], skip_special_tokens=True))-
OLMo2 uses RMSNorm instead of standard layer norm. The RMSNorm is applied to attention queries and keys, and it is applied after the attention and feedforward layers rather than before.
-
OLMo2 requires Transformers v4.48 or higher.
-
Load specific intermediate checkpoints by adding the
revisionparameter tofrom_pretrained.from transformers import AutoModelForCausalLMmodel = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-0425-1B", revision="stage1-step140000-tokens294B")
Olmo2Config
Section titled “Olmo2Config”[[autodoc]] Olmo2Config
Olmo2Model
Section titled “Olmo2Model”[[autodoc]] Olmo2Model - forward
Olmo2ForCausalLM
Section titled “Olmo2ForCausalLM”[[autodoc]] Olmo2ForCausalLM - forward