LLaVA-NeXT
This model was released on 2024-01-30 and added to Hugging Face Transformers on 2024-03-20.
LLaVA-NeXT
Section titled “LLaVA-NeXT”LLaVA‑NeXT improves on Llava by increasing the input image resolution by 4x more pixels and supporting 3 aspect ratios (up to 672x672, 336x1344, 1344x336) to better grasp visual details. It is also trained on an improved visual instruction tuning dataset covering more scenarios and applications to improve OCR and common sense reasoning.
You can find all the original LLaVA‑NeXT checkpoints under the LLaVA-NeXT collection.
Click on the LLaVA‑NeXT models in the right sidebar for more examples of how to apply Llava-NeXT to different multimodal tasks.
The example below demonstrates how to generate text based on an image with Pipeline or the AutoModel class.
import torchfrom transformers import pipeline
pipeline = pipeline( task="image-text-to-text", model="llava-hf/llava-v1.6-mistral-7b-hf", device=0, dtype=torch.bfloat16)messages = [ { "role": "user", "content": [ { "type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg", }, { "type": "text", "text": "Describe this image."}, ] }]pipeline(text=messages, max_new_tokens=20, return_full_text=False)import torchimport requestsfrom PIL import Imagefrom transformers import AutoProcessor, LlavaNextForConditionalGenerationfrom accelerate import Accelerator
device = Accelerator().device
processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", dtype=torch.float16).to(device)
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"image = Image.open(requests.get(url, stream=True).raw)
conversation = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "What is shown in this image?"}, ], },]prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)inputs = processor(image, prompt, return_tensors="pt").to(model.device)output = model.generate(**inputs, max_new_tokens=100)print(processor.decode(output[0], skip_special_tokens=True))Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.
The example below uses bitsandbytes to only quantize the weights to int4.
import torchimport requestsfrom PIL import Imagefrom transformers import AutoModelForImageTextToText, AutoProcessor, BitsAndBytesConfig
quant_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_quant_type="nf4")
processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")model = AutoModelForImageTextToText.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", quantization_config=quant_config, device_map="auto")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llava_next_ocr.png"image = Image.open(requests.get(url, stream=True).raw)
conversation = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "What does this chart show?"}, ], },]prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)inputs = processor(image, prompt, return_tensors="pt").to(model.device)
with torch.inference_mode(): output = model.generate(**inputs, max_new_tokens=100)print(processor.decode(output[0], skip_special_tokens=True))-
Different checkpoints (Mistral, Vicuna, etc.) require a specific prompt format depending on the underlying LLM. Always use
apply_chat_templateto ensure correct formatting. Refer to the Templates guide for more details. -
Set
padding_side="left"during batched generation for more accurate results.
processor.tokenizer.padding_side = "left"-
LLaVA-NeXT uses different numbers of patches for images and pads the inputs inside the modeling code except when padding is done during processing. The default setting is left-padding if the model is in
eval()mode, otherwise it is right-padding. -
LLaVA models after v4.46 raises warnings about adding
processor.patch_size = {{patch_size}},processor.num_additional_image_tokens = {{num_additional_image_tokens}}, andprocessor.vision_feature_select_strategy = {{vision_feature_select_strategy}}. It is strongly recommended to add these attributes to the processor if you own the model checkpoint or open a PR if it isn’t.Adding these attributes means LLaVA will try to infer the number of image tokens required per image and expand the text with the same number of
<image>token placeholders. There are usually ~500 tokens per image, so make sure the text is not truncated because it will cause a failure when merging the embeddings. The attributes can be found inmodel.config.vision_config.patch_sizeormodel.config.vision_feature_select_strategy.The
num_additional_image_tokensshould be1if the vision backbone adds aCLStoken or0if nothing extra is added. -
The example below demonstrates inference with multiple input images.
from transformers import LlavaNextProcessor, LlavaNextForConditionalGenerationfrom PIL import Imageimport requests, torch
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")model = LlavaNextForConditionalGeneration.from_pretrained( "llava-hf/llava-v1.6-mistral-7b-hf", dtype=torch.float16, device_map="auto")
# Load multiple imagesurl1 = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llava_next_ocr.png"url2 = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llava_next_comparison.png"
image1 = Image.open(requests.get(url1, stream=True).raw)image2 = Image.open(requests.get(url2, stream=True).raw)
conversation = [ {"role": "user", "content": [{"type": "image"}, {"type": "image"}, {"type": "text", "text": "Compare these two images and describe the differences."}]}]prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)inputs = processor([image1, image2], prompt, return_tensors="pt").to(model.device)
output = model.generate(**inputs, max_new_tokens=100)print(processor.decode(output[0], skip_special_tokens=True))LlavaNextConfig
Section titled “LlavaNextConfig”[[autodoc]] LlavaNextConfig
LlavaNextImageProcessor
Section titled “LlavaNextImageProcessor”[[autodoc]] LlavaNextImageProcessor - preprocess
LlavaNextImageProcessorFast
Section titled “LlavaNextImageProcessorFast”[[autodoc]] LlavaNextImageProcessorFast - preprocess
LlavaNextProcessor
Section titled “LlavaNextProcessor”[[autodoc]] LlavaNextProcessor
LlavaNextModel
Section titled “LlavaNextModel”[[autodoc]] LlavaNextModel
LlavaNextForConditionalGeneration
Section titled “LlavaNextForConditionalGeneration”[[autodoc]] LlavaNextForConditionalGeneration - forward