HGNet-V2
This model was released on 2024-07-01 and added to Hugging Face Transformers on 2025-04-29.
HGNet-V2
Section titled “HGNet-V2”HGNetV2 is a next-generation convolutional neural network (CNN) backbone built for optimal accuracy-latency tradeoff on NVIDIA GPUs. Building on the originalHGNet, HGNetV2 delivers high accuracy at fast inference speeds and performs strongly on tasks like image classification, object detection, and segmentation, making it a practical choice for GPU-based computer vision applications.
You can find all the original HGNet V2 models under the USTC organization.
The example below demonstrates how to classify an image with Pipeline or the AutoModel class.
import torchfrom transformers import pipeline
pipeline = pipeline( task="image-classification", model="ustc-community/hgnet-v2", dtype=torch.float16, device=0)pipeline("http://images.cocodataset.org/val2017/000000039769.jpg")import torchimport requestsfrom transformers import HGNetV2ForImageClassification, AutoImageProcessorfrom PIL import Image
url = "http://images.cocodataset.org/val2017/000000039769.jpg"image = Image.open(requests.get(url, stream=True).raw)
model = HGNetV2ForImageClassification.from_pretrained("ustc-community/hgnet-v2")processor = AutoImageProcessor.from_pretrained("ustc-community/hgnet-v2")
inputs = processor(images=image, return_tensors="pt")with torch.no_grad(): logits = model(**inputs).logitspredicted_class_id = logits.argmax(dim=-1).item()
class_labels = model.config.id2labelpredicted_class_label = class_labels[predicted_class_id]print(f"The predicted class label is: {predicted_class_label}")HGNetV2Config
Section titled “HGNetV2Config”[[autodoc]] HGNetV2Config
HGNetV2Backbone
Section titled “HGNetV2Backbone”[[autodoc]] HGNetV2Backbone - forward
HGNetV2ForImageClassification
Section titled “HGNetV2ForImageClassification”[[autodoc]] HGNetV2ForImageClassification - forward