Gemma3n
This model was released on 2025-05-20 and added to Hugging Face Transformers on 2025-06-26.
Gemma3n
Section titled “Gemma3n”Overview
Section titled “Overview”Gemma3n is a multimodal model with pretrained and instruction-tuned variants, available in E4B and E2B sizes. While large portions of the language model architecture are shared with prior Gemma releases, there are many new additions in this model, including Alternating Updates (AltUp), Learned Augmented Residual Layer (LAuReL), MatFormer, Per-Layer Embeddings (PLE), Activation Sparsity with Statistical Top-k, and KV cache sharing. The language model uses a similar attention pattern to Gemma 3 with alternating 4 local sliding window self-attention layers for every global self-attention layer with a maximum context length of 32k tokens. Gemma 3n introduces MobileNet v5 as the vision encoder, using a default resolution of 768x768 pixels, and adds a newly trained audio encoder based on the Universal Speech Model (USM) architecture.
The instruction-tuned variant was post-trained with knowledge distillation and reinforcement learning.
You can find all the original Gemma 3n checkpoints under the Gemma 3n release.
The example below demonstrates how to generate text based on an image with Pipeline or the AutoModel class.
import torchfrom transformers import pipeline
pipeline = pipeline( task="image-text-to-text", model="google/gemma-3n-e4b", device=0, dtype=torch.bfloat16)pipeline( "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg", text="<start_of_image> What is shown in this image?")import torchfrom transformers import AutoProcessor, Gemma3nForConditionalGeneration
model = Gemma3nForConditionalGeneration.from_pretrained( "google/gemma-3n-e4b-it", dtype=torch.bfloat16, device_map="auto", attn_implementation="sdpa")processor = AutoProcessor.from_pretrained( "google/gemma-3n-e4b-it", padding_side="left")
messages = [ { "role": "system", "content": [ {"type": "text", "text": "You are a helpful assistant."} ] }, { "role": "user", "content": [ {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"}, {"type": "text", "text": "What is shown in this image?"}, ] },]inputs = processor.apply_chat_template( messages, tokenize=True, return_dict=True, return_tensors="pt", add_generation_prompt=True,).to(model.device)
output = model.generate(**inputs, max_new_tokens=50, cache_implementation="static")print(processor.decode(output[0], skip_special_tokens=True))echo -e "Plants create energy through a process known as" | transformers run --task text-generation --model google/gemma-3n-e2b --device 0-
Use
Gemma3nForConditionalGenerationfor image-audio-and-text, image-and-text, image-and-audio, audio-and-text, image-only and audio-only inputs. -
Gemma 3n supports multiple images per input, but make sure the images are correctly batched before passing them to the processor. Each batch should be a list of one or more images.
url_cow = "https://media.istockphoto.com/id/1192867753/photo/cow-in-berchida-beach-siniscola.jpg?s=612x612&w=0&k=20&c=v0hjjniwsMNfJSuKWZuIn8pssmD5h5bSN1peBd1CmH4="url_cat = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"messages =[{"role": "system","content": [{"type": "text", "text": "You are a helpful assistant."}]},{"role": "user","content": [{"type": "image", "url": url_cow},{"type": "image", "url": url_cat},{"type": "text", "text": "Which image is cuter?"},]},] -
Text passed to the processor should have a
<image_soft_token>token wherever an image should be inserted. -
Gemma 3n accept at most one target audio clip per input, though multiple audio clips can be provided in few-shot prompts, for example.
-
Text passed to the processor should have a
<audio_soft_token>token wherever an audio clip should be inserted. -
The processor has its own
apply_chat_templatemethod to convert chat messages to model inputs.
Gemma3nAudioFeatureExtractor
Section titled “Gemma3nAudioFeatureExtractor”[[autodoc]] Gemma3nAudioFeatureExtractor
Gemma3nProcessor
Section titled “Gemma3nProcessor”[[autodoc]] Gemma3nProcessor
Gemma3nTextConfig
Section titled “Gemma3nTextConfig”[[autodoc]] Gemma3nTextConfig
Gemma3nVisionConfig
Section titled “Gemma3nVisionConfig”[[autodoc]] Gemma3nVisionConfig
Gemma3nAudioConfig
Section titled “Gemma3nAudioConfig”[[autodoc]] Gemma3nAudioConfig
Gemma3nConfig
Section titled “Gemma3nConfig”[[autodoc]] Gemma3nConfig
Gemma3nTextModel
Section titled “Gemma3nTextModel”[[autodoc]] Gemma3nTextModel - forward
Gemma3nModel
Section titled “Gemma3nModel”[[autodoc]] Gemma3nModel - forward
Gemma3nForCausalLM
Section titled “Gemma3nForCausalLM”[[autodoc]] Gemma3nForCausalLM - forward
Gemma3nForConditionalGeneration
Section titled “Gemma3nForConditionalGeneration”[[autodoc]] Gemma3nForConditionalGeneration - forward