Florence-2
This model was released on 2024-06-16 and added to Hugging Face Transformers on 2025-08-20.
Florence-2
Section titled “Florence-2”
Overview
Section titled “Overview”Florence-2 is an advanced vision foundation model that uses a prompt-based approach to handle a wide range of vision and vision-language tasks. Florence-2 can interpret simple text prompts to perform tasks like captioning, object detection, and segmentation. It leverages the FLD-5B dataset, containing 5.4 billion annotations across 126 million images, to master multi-task learning. The model’s sequence-to-sequence architecture enables it to excel in both zero-shot and fine-tuned settings, proving to be a competitive vision foundation model.
You can find all the original Florence-2 checkpoints under the Florence-2 collection.
The example below demonstrates how to perform object detection with Pipeline or the AutoModel class.
import torchimport requestsfrom PIL import Imagefrom transformers import pipeline
pipeline = pipeline( "image-text-to-text", model="florence-community/Florence-2-base", device=0, dtype=torch.bfloat16)
pipeline( "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true", text="<OD>")import torchimport requestsfrom PIL import Imagefrom transformers import AutoProcessor, Florence2ForConditionalGeneration
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
model = Florence2ForConditionalGeneration.from_pretrained("florence-community/Florence-2-base", dtype=torch.bfloat16, device_map="auto")processor = AutoProcessor.from_pretrained("florence-community/Florence-2-base")
task_prompt = "<OD>"inputs = processor(text=task_prompt, images=image, return_tensors="pt").to(model.device)
generated_ids = model.generate( **inputs, max_new_tokens=1024, num_beams=3,)generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
image_size = image.sizeparsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=image_size)print(parsed_answer)Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.
The example below uses bitsandbytes to quantize the model to 4-bit.
# pip install bitsandbytesimport torchimport requestsfrom PIL import Imagefrom transformers import AutoProcessor, Florence2ForConditionalGeneration, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model = Florence2ForConditionalGeneration.from_pretrained( "florence-community/Florence-2-base", dtype=torch.bfloat16, device_map="auto", quantization_config=quantization_config)processor = AutoProcessor.from_pretrained("florence-community/Florence-2-base")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
task_prompt = "<OD>"inputs = processor(text=task_prompt, images=image, return_tensors="pt").to(model.device, torch.bfloat16)
generated_ids = model.generate( **inputs, max_new_tokens=1024, num_beams=3,)generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
image_size = image.sizeparsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=image_size)
print(parsed_answer)- Florence-2 is a prompt-based model. You need to provide a task prompt to tell the model what to do. Supported tasks are:
<OCR><OCR_WITH_REGION><CAPTION><DETAILED_CAPTION><MORE_DETAILED_CAPTION><OD><DENSE_REGION_CAPTION><CAPTION_TO_PHRASE_GROUNDING><REFERRING_EXPRESSION_SEGMENTATION><REGION_TO_SEGMENTATION><OPEN_VOCABULARY_DETECTION><REGION_TO_CATEGORY><REGION_TO_DESCRIPTION><REGION_TO_OCR><REGION_PROPOSAL>
- The raw output of the model is a string that needs to be parsed. The
Florence2Processorhas apost_process_generationmethod that can parse the string into a more usable format, like bounding boxes and labels for object detection.
Resources
Section titled “Resources”- Florence-2 technical report
- Jupyter Notebook for inference and visualization of Florence-2-large model
Florence2VisionConfig
Section titled “Florence2VisionConfig”[[autodoc]] Florence2VisionConfig
Florence2Config
Section titled “Florence2Config”[[autodoc]] Florence2Config
Florence2Processor
Section titled “Florence2Processor”[[autodoc]] Florence2Processor
Florence2Model
Section titled “Florence2Model”[[autodoc]] Florence2Model - forward
Florence2ForConditionalGeneration
Section titled “Florence2ForConditionalGeneration”[[autodoc]] Florence2ForConditionalGeneration - forward
Florence2VisionBackbone
Section titled “Florence2VisionBackbone”[[autodoc]] Florence2VisionBackbone - forward