Skip to content

DINOv3

This model was released on 2025-08-13 and added to Hugging Face Transformers on 2025-08-14.

PyTorch FlashAttention SDPA

DINOv3 is a family of versatile vision foundation models that outperforms the specialized state of the art across a broad range of settings, without fine-tuning. DINOv3 produces high-quality dense features that achieve outstanding performance on various vision tasks, significantly surpassing previous self- and weakly-supervised foundation models.

You can find all the original DINOv3 checkpoints under the DINOv3 collection.

The example below demonstrates how to obtain an image embedding with Pipeline or the AutoModel class.

import torch
from transformers import pipeline
pipe = pipeline(
task="image-feature-extraction",
model="facebook/dinov3-vits16-pretrain-lvd1689m",
dtype=torch.bfloat16,
)
pipe("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
import torch
from transformers import AutoImageProcessor, AutoModel
from transformers.image_utils import load_image
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = load_image(url)
processor = AutoImageProcessor.from_pretrained("facebook/dinov3-vits16-pretrain-lvd1689m")
model = AutoModel.from_pretrained(
"facebook/dinov3-vits16-pretrain-lvd1689m",
dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
inputs = processor(images=image, return_tensors="pt").to(model.device)
with torch.inference_mode():
outputs = model(**inputs)
pooled_output = outputs.pooler_output
print("Pooled output shape:", pooled_output.shape)

Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.

The example below uses torchao to only quantize the weights to int4.

# pip install torchao
import torch
from transformers import TorchAoConfig, AutoImageProcessor, AutoModel
from torchao.quantization import Int4WeightOnlyConfig
from transformers.image_utils import load_image
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = load_image(url)
processor = AutoImageProcessor.from_pretrained("facebook/dinov3-vitsplus-pretrain-lvd1689m")
quant_type = Int4WeightOnlyConfig(group_size=128)
quantization_config = TorchAoConfig(quant_type=quant_type)
model = AutoModel.from_pretrained(
"facebook/dinov3-vit7b16-pretrain-lvd1689m",
dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
inputs = processor(images=image, return_tensors="pt").to(model.device)
with torch.inference_mode():
outputs = model(**inputs)
pooled_output = outputs.pooler_output
print("Pooled output shape:", pooled_output.shape)
  • The example below shows how to split the output tensor into:

    • one embedding for the whole image, commonly referred to as a CLS token, useful for classification and retrieval
    • register tokens - learnable embeddings that act as dedicated “memory slots” for global information, they reduce high-norm artifacts in patch tokens, yielding cleaner attention maps and better performance on dense prediction tasks.
    • a set of local embeddings, one for each 16x16 patch of the input image, useful for dense tasks, such as semantic segmentation
    import torch
    from transformers import AutoImageProcessor, AutoModel
    from transformers.image_utils import load_image
    url = "http://images.cocodataset.org/val2017/000000039769.jpg"
    image = load_image(url)
    print("Image size:", image.height, image.width) # [480, 640]
    processor = AutoImageProcessor.from_pretrained("facebook/dinov3-vits16-pretrain-lvd1689m")
    model = AutoModel.from_pretrained("facebook/dinov3-vits16-pretrain-lvd1689m")
    patch_size = model.config.patch_size
    print("Patch size:", patch_size) # 16
    print("Num register tokens:", model.config.num_register_tokens) # 4
    inputs = processor(images=image, return_tensors="pt")
    print("Preprocessed image size:", inputs.pixel_values.shape) # [1, 3, 224, 224]
    batch_size, _, img_height, img_width = inputs.pixel_values.shape
    num_patches_height, num_patches_width = img_height // patch_size, img_width // patch_size
    num_patches_flat = num_patches_height * num_patches_width
    with torch.inference_mode():
    outputs = model(**inputs)
    last_hidden_states = outputs.last_hidden_state
    print(last_hidden_states.shape) # [1, 1 + 4 + 256, 384]
    assert last_hidden_states.shape == (batch_size, 1 + model.config.num_register_tokens + num_patches_flat, model.config.hidden_size)
    cls_token = last_hidden_states[:, 0, :]
    patch_features_flat = last_hidden_states[:, 1 + model.config.num_register_tokens:, :]
    patch_features = patch_features_flat.unflatten(1, (num_patches_height, num_patches_width))

[[autodoc]] DINOv3ViTConfig

[[autodoc]] DINOv3ConvNextConfig

[[autodoc]] DINOv3ViTModel - forward

[[autodoc]] DINOv3ViTBackbone

[[autodoc]] DINOv3ConvNextModel - forward

[[autodoc]] DINOv3ViTImageProcessorFast - preprocess

[[autodoc]] DINOv3ConvNextBackbone - forward