Skip to content

DeepseekVL

This model was released on 2024-03-08 and added to Hugging Face Transformers on 2025-07-25.

PyTorch FlashAttention SDPA

Deepseek-VL was introduced by the DeepSeek AI team. It is a vision-language model (VLM) designed to process both text and images for generating contextually relevant responses. The model leverages LLaMA as its text encoder, while SigLip is used for encoding images.

You can find all the original Deepseek-VL checkpoints under the DeepSeek-community organization.

The example below demonstrates how to generate text based on an image with Pipeline or the AutoModel class.

import torch
from transformers import pipeline
pipe = pipeline(
task="image-text-to-text",
model="deepseek-community/deepseek-vl-1.3b-chat",
device=0,
dtype=torch.float16
)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
},
{ "type": "text", "text": "Describe this image."},
]
}
]
pipe(text=messages, max_new_tokens=20, return_full_text=False)
import torch
from transformers import DeepseekVLForConditionalGeneration, AutoProcessor
model = DeepseekVLForConditionalGeneration.from_pretrained(
"deepseek-community/deepseek-vl-1.3b-chat",
dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
processor = AutoProcessor.from_pretrained("deepseek-community/deepseek-vl-1.3b-chat")
messages = [
{
"role":"user",
"content":[
{
"type":"image",
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
},
{
"type":"text",
"text":"Describe this image."
}
]
}
]
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device, dtype=model.dtype)
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)

Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.

The example below uses torchao to only quantize the weights to int4.

import torch
from transformers import TorchAoConfig, DeepseekVLForConditionalGeneration, AutoProcessor
quantization_config = TorchAoConfig(
"int4_weight_only",
group_size=128
)
model = DeepseekVLForConditionalGeneration.from_pretrained(
"deepseek-community/deepseek-vl-1.3b-chat",
dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
  • Do inference with multiple images in a single conversation.

    import torch
    from transformers import DeepseekVLForConditionalGeneration, AutoProcessor
    model = DeepseekVLForConditionalGeneration.from_pretrained(
    "deepseek-community/deepseek-vl-1.3b-chat",
    dtype=torch.float16,
    device_map="auto",
    attn_implementation="sdpa"
    )
    processor = AutoProcessor.from_pretrained("deepseek-community/deepseek-vl-1.3b-chat")
    messages = [
    [
    {
    "role": "user",
    "content": [
    {"type": "text", "text": "What’s the difference between"},
    {"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"},
    {"type": "text", "text": " and "},
    {"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}
    ]
    }
    ],
    [
    {
    "role": "user",
    "content": [
    {"type": "image", "url": "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"},
    {"type": "text", "text": "What do you see in this image?"}
    ]
    }
    ]
    ]
    inputs = processor.apply_chat_template(
    messages,
    add_generation_prompt=True,
    padding=True,
    truncation=True,
    tokenize=True,
    return_dict=True,
    return_tensors="pt"
    ).to(model.device, dtype=model.dtype)
    generated_ids = model.generate(**inputs, max_new_tokens=128)
    generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )
    print(output_text)

[[autodoc]] DeepseekVLConfig

[[autodoc]] DeepseekVLProcessor

[[autodoc]] DeepseekVLImageProcessor

[[autodoc]] DeepseekVLImageProcessorFast

[[autodoc]] DeepseekVLModel - forward

[[autodoc]] DeepseekVLForConditionalGeneration - forward