Skip to content

Cohere

This model was released on 2024-03-12 and added to Hugging Face Transformers on 2024-03-15.

PyTorch FlashAttention SDPA Tensor parallelism

Cohere Command-R is a 35B parameter multilingual large language model designed for long context tasks like retrieval-augmented generation (RAG) and calling external APIs and tools. The model is specifically trained for grounded generation and supports both single-step and multi-step tool use. It supports a context length of 128K tokens.

You can find all the original Command-R checkpoints under the Command Models collection.

The example below demonstrates how to generate text with Pipeline or the AutoModel, and from the command line.

import torch
from transformers import pipeline
pipeline = pipeline(
task="text-generation",
model="CohereForAI/c4ai-command-r-v01",
dtype=torch.float16,
device=0
)
pipeline("Plants create energy through a process known as")
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("CohereForAI/c4ai-command-r-v01")
model = AutoModelForCausalLM.from_pretrained("CohereForAI/c4ai-command-r-v01", dtype=torch.float16, device_map="auto", attn_implementation="sdpa")
# format message with the Command-R chat template
messages = [{"role": "user", "content": "How do plants make energy?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
output = model.generate(
input_ids,
max_new_tokens=100,
do_sample=True,
temperature=0.3,
cache_implementation="static",
)
print(tokenizer.decode(output[0], skip_special_tokens=True))
Terminal window
# pip install -U flash-attn --no-build-isolation
transformers chat CohereForAI/c4ai-command-r-v01 --dtype auto --attn_implementation flash_attention_2

Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.

The example below uses bitsandbytes to quantize the weights to 4-bits.

import torch
from transformers import BitsAndBytesConfig, AutoTokenizer, AutoModelForCausalLM
bnb_config = BitsAndBytesConfig(load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained("CohereForAI/c4ai-command-r-v01")
model = AutoModelForCausalLM.from_pretrained("CohereForAI/c4ai-command-r-v01", dtype=torch.float16, device_map="auto", quantization_config=bnb_config, attn_implementation="sdpa")
# format message with the Command-R chat template
messages = [{"role": "user", "content": "How do plants make energy?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
output = model.generate(
input_ids,
max_new_tokens=100,
do_sample=True,
temperature=0.3,
cache_implementation="static",
)
print(tokenizer.decode(output[0], skip_special_tokens=True))

Use the AttentionMaskVisualizer to better understand what tokens the model can and cannot attend to.

from transformers.utils.attention_visualizer import AttentionMaskVisualizer
visualizer = AttentionMaskVisualizer("CohereForAI/c4ai-command-r-v01")
visualizer("Plants create energy through a process known as")
  • Don’t use the dtype parameter in from_pretrained if you’re using FlashAttention-2 because it only supports fp16 or bf16. You should use Automatic Mixed Precision, set fp16 or bf16 to True if using Trainer, or use torch.autocast.

[[autodoc]] CohereConfig

[[autodoc]] CohereTokenizer

[[autodoc]] CohereModel - forward

[[autodoc]] CohereForCausalLM - forward