Skip to content

BertGeneration

This model was released on 2019-07-29 and added to Hugging Face Transformers on 2020-11-16.

PyTorch

BertGeneration leverages pretrained BERT checkpoints for sequence-to-sequence tasks with the EncoderDecoderModel architecture. BertGeneration adapts the BERT for generative tasks.

You can find all the original BERT checkpoints under the BERT collection.

Click on the BertGeneration models in the right sidebar for more examples of how to apply BertGeneration to different sequence generation tasks.

The example below demonstrates how to use BertGeneration with EncoderDecoderModel for sequence-to-sequence tasks.

import torch
from transformers import pipeline
pipeline = pipeline(
task="text2text-generation",
model="google/roberta2roberta_L-24_discofuse",
dtype=torch.float16,
device=0
)
pipeline("Plants create energy through ")
import torch
from transformers import EncoderDecoderModel, AutoTokenizer
model = EncoderDecoderModel.from_pretrained("google/roberta2roberta_L-24_discofuse", dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("google/roberta2roberta_L-24_discofuse")
input_ids = tokenizer(
"Plants create energy through ", add_special_tokens=False, return_tensors="pt"
).input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
Terminal window
echo -e "Plants create energy through " | transformers run --task text2text-generation --model "google/roberta2roberta_L-24_discofuse" --device 0

Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.

The example below uses BitsAndBytesConfig to quantize the weights to 4-bit.

import torch
from transformers import EncoderDecoderModel, AutoTokenizer, BitsAndBytesConfig
# Configure 4-bit quantization
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
model = EncoderDecoderModel.from_pretrained(
"google/roberta2roberta_L-24_discofuse",
quantization_config=quantization_config,
dtype="auto"
)
tokenizer = AutoTokenizer.from_pretrained("google/roberta2roberta_L-24_discofuse")
input_ids = tokenizer(
"Plants create energy through ", add_special_tokens=False, return_tensors="pt"
).input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
  • BertGenerationEncoder and BertGenerationDecoder should be used in combination with EncoderDecoderModel for sequence-to-sequence tasks.

    from transformers import BertGenerationEncoder, BertGenerationDecoder, BertTokenizer, EncoderDecoderModel
    # leverage checkpoints for Bert2Bert model
    # use BERT's cls token as BOS token and sep token as EOS token
    encoder = BertGenerationEncoder.from_pretrained("google-bert/bert-large-uncased", bos_token_id=101, eos_token_id=102)
    # add cross attention layers and use BERT's cls token as BOS token and sep token as EOS token
    decoder = BertGenerationDecoder.from_pretrained(
    "google-bert/bert-large-uncased", add_cross_attention=True, is_decoder=True, bos_token_id=101, eos_token_id=102
    )
    bert2bert = EncoderDecoderModel(encoder=encoder, decoder=decoder)
    # create tokenizer
    tokenizer = BertTokenizer.from_pretrained("google-bert/bert-large-uncased")
    input_ids = tokenizer(
    "This is a long article to summarize", add_special_tokens=False, return_tensors="pt"
    ).input_ids
    labels = tokenizer("This is a short summary", return_tensors="pt").input_ids
    # train
    loss = bert2bert(input_ids=input_ids, decoder_input_ids=labels, labels=labels).loss
    loss.backward()
  • For summarization, sentence splitting, sentence fusion and translation, no special tokens are required for the input.

  • No EOS token should be added to the end of the input for most generation tasks.

[[autodoc]] BertGenerationConfig

[[autodoc]] BertGenerationTokenizer - save_vocabulary

[[autodoc]] BertGenerationEncoder - forward

[[autodoc]] BertGenerationDecoder - forward